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ABSTRACT

Techniques for extractions boundary layer parameters from measurements

of a short-pulse (,,_ 1 _s) CO2 Doppler Lidar (A = 10.6 #m) are described.

The Lidar is operated by the National Oceanic and Atmospheric Administration

(NOAA) Wave Propagation Laboratory (WPL). The measurements are those col-

lected during the First International Satellites Land surface Climatology Project

(ISLSCP) Field Experiment (FIFE). The radial velocity measurements have a

range resolution of 150 m. With a pulse repetition rate of 20 Hz, it is possible to

perform scannings in two perpendicular vertical planes (x-z and y-z) in _ 72 s.

By continuously operating the Lidar for about an hour, one can extract stable

statistics of the radial velocities. Assuming that the turbulence is horizontally ho-

mogeneous, we have estimated the mean wind, its standard deviations, and the

momentum fluxes. From the vertically pointing beam we have estimated the first,

second, and, third moments of the vertical velocity. Spectral analysis of the ra-

dial velocities is also performed from which, by examining the amplitude of the

power spectrum at the inertial range, we have deduced the kinetic energy dissipa-

tion. Finally, using the statistical form of the Navier-Stokes equations, the surface

heat flux is derived as the residual balance between the vertical gradient of the

third moment of the vertical velocitv and the kinetic energy dissipation. With the

exception of the vertically pointing beam, an individual radial velocity estimate

is accurate only to +0.7 ms -1. Combining man?, measurements would normally

reduce the error provided that, it is un-biased and un-correlated. The nature of

some of the algorithms however, is such that, biased and correlated errors may be

generated even though the "raw" measurements are not. We have developed data

processing procedures that eliminate bias and minimize error correlation. Once

bias and error correlations are accounted for, the large sample size is shown to
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reduce the errors substantially. We show for instance that, a single momentum

flux estimate has an accuracy of +2 m2s -2 but, when combined with other mea-

surements the error can be reduced to ±0.10 m2s -2. The principal features of the

derived turbulence statistics for two case studies (11 July 1987 16:11-17:10 UTC

and 17:29-18:10 UTC) are as follows:

--1
(a) The mean surface wind is from the south and has a speed of _ 15 ms

There is a southerly jet at 1 km above the surface. The wind in the direction nor-

mal to the surface wind is becoming more westerly with height.

(b) The derived momentum fluxes in the mixed layer agree with the unfiltered

airplane measurements. They are of the order of _ 0.5 m2s -2 near the surface

and are retarding the southerly wind. At the stable layer, the momentum fluxes

are counter-gradient; they remain negative even though the southerlies are di-

minishing with height; and furthermore they are concentrated in thin layers. By

spectrally analysing the vertical beam, we have identified the Brunt V_is£1£ fre-

quency as the dominant frequency in the stable layer. The available evidence sug-

gests that the large counter-gradient fluxes are due to a critical layer singularity.

Under these conditions gravity waves flux divergence may be large. Current Gen-

eral Circulations Models (GCM's) generally do not parameterize counter-gradient

momentum transport. If the phenomenon is prevalent, our study suggests that in-

clusion of such an effect may be important.

(c) The spectrum of the wind near the surface has a -5/3 power law at the iner-

tim range. The heat flux estimate is 100 ± 20 Wm -2 in apparent agreement with

the surface stations estimate but, systematically larger than the filtered airplane

data.
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1. Introduction and Goals

The purpose of this paper is two fold. First we wish to describe in some

detail an analysis technique of a single Doppler Lidar (for Light Detection and

Range) data which allows the estimation of the following turbulence parameters:

a) mean wind (_, _, t_) where ( ) is a symbol for some kind of average (to be de-

fined in section 4) and (u, v, w) are the Cartesian velocities in the (x, y, z) direc-

/ 12 12 )1tions respectively; b) the variance _u , v , w '_), where ( is a symbol for the

deviations from the mean; c) the part of the covariance associated with the ver-

tical fluxes of horizontal momentum (u'w', v'w') and d) the third moment of the

vertical velocity, w '3, the kinetic energy dissipation e and the surface heat flux.

A second objective of our research is to study the behaviour of the convective

Planetary Boundary Layer (PBL) and it's overlying stable region under the con-

dition of strong surface wind, moderate surface heat flux and a low level jet. We

shall sometimes refer to the PBL as ABL (Atmospheric Boundary Layer).

The scale of motions investigated in our study are in the range of

150 m - 12 km, too small to be resolved by current and near future General Cir-

culation Models (GCM's); yet generally recognised to have an important influ-

ence on the larger scales. The proper "parameterisations" of these processes re-

mains an important unsolved issue despite several decades of research (Wyngaard,

1983). One reason for tile apparent slow progress is the requirements for acquir-

ing large samples in a relatively short time so that, on the one hand the statistics

are stable but, on the other hand the sampling time must be sufficiently short,

so that evolution can be ignored (Wyngaard, 1983). As a result "too many mod-

els are chasing too little data...". Due to an ability to measure simultaneously

a ray of points (actually resolution volumes) remote sensing by Doppler Lidars

and Radars could contribute significantly to alleviate the sampling problems . In
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our casefor instance, a ray (containing fifty to a hundred data points) could be

sensedin 1/20 s. Suchsampling rate is an order of magnitude faster than in situ

observations (e.g by aircraft or meteorologicaltowers).

Another unresolvedissuein atmospheric turbulence is the similarities and

differencesbetweenstratified and convectiveturbulence (Lilly, 1982)as well as

the interaction between the convectionin the mixed layer and the wavesin the

stable region above(Kuetner et al., 1987). The Lidar data that we have collected

include observationsin both the mixed layer and parts of the overlying stable re-

gion. Thus, it is possibleto comparetheorieswith observations.

The data basefor this study are measurementstaken during the First Inter-

national Satellites Land Surface Climatology Project (ISLSCP) Field Experiment

(FIFE) in Manhattan, KS. Since, the experimental technique, the data reduction

and the hardware are still under development (Eberhard et al., 1989) we confine

ourselves here to two case studies (11 July 1987, 16:11-17:10 UTC and 17:29-18:20

UTC). The Central Standard Time (CST) is lagging five hours behind the Coor-

dinated Universal Time (UTC).

2. System Characteristics

For the purpose of this presentation we assume that the Doppler Lidar is

simply a "black box" which measures the frequency shift between a transmitted

(coherent) pulse and the backscattered power. The frequency difference is a mea-

sure of the velocity component toward or away from the Lidar (i.e., the radial ve-

locity). The frequency co of the transmitted pulse is given by co = c27r/)_ where

A is the wave length of the emitted radiation (10.6 #rn) and c the speed of light.

The pulse duration AT is l#s which means that at any given time the recorded

backscattered power is actually a superposition of returns from several ranges re-
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flecting different parts of the pulse. The range resolution AR (i.e., the length of

the line interval which corresponds to backscattered power recorded at the same

time) is then given by 2AR = cAT. This means in our case that AR = 150 m.

The factor 2 takes into account that the pulse goes out and is reflected back.

The minimum range below which velocity estimates are not reliable is 600 m.

The maximum range above which the signal/noise ratio is too low to permit ra-

dial wind estimates depends mostly on aerosols content and absolute humidity

(Eberhard et al., 1989). For these particular case studies it appears to be 6 km in

the horizontal and 2 km in the vertical. Since the Lidar scanner can move ver-

tically and horizontally, one can combine "forward" and "backward" shots to

obtain at the surface velocity measurements along a 12 km line with a "gap" of

seven range gates in the centre. As one moves upward the lines becomes progres-

sively shorter since no useful returns are available above 2 km. Finally it should

be mentioned that the pulse repetition rate is 20 Hz (i.e., 20 pulses are being

fired in one second). With the exception of the vertical direction, three pulses

are combined to get a more stable (less noisy) velocity estimate (4-0.70 ms-_).

In the vertical direction we use twelve shots to get a more accurate estimate

(4-0.35 ms -1) of the vertical velocity .

Combining the above information it is concluded that, a radial can be sensed

in 0.15 s. Since a single horizontal beam contains 37 useful velocity measure-

ments the over all sampling rate is several orders of magnitude faster than typical

sampling rate of an airplane. Further details of the Lidar characteristics may be

found in Eberhard et al. (1989).

3. Experimental Design

The experimental design is a compromise between two conflicting require-
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ments. First one a wishesto coverevery resolution volume in the boundary layer

(i.e., to observea contiguous sequenceof volumes,eachapproximately 150m3 in

size. Second,it is deemeddesirableto scan the entire boundary layer fast enough

so that, the assumptionof a statistical steady state would be valid. Unfortu-

nately, taking into account the system characteristics it is not possible to satisfy

the aboverequirements simultaneously. Instead of covering the entire volume we

have decided to scanin two mutually orthogonal planes. For horizontally homo-

geneousturbulence the choiceof the two orthogonal planescould be arbitrary;

knowledgeof the statistics in one coordinate systemimplies knowledgein any

other coordinate system (Batchelor, 1956). For conveniencehowever,one plane

say (x-z) is formed by the vertical and the line in the direction of the mean sur-

face wind. The other plane (y-z) is the vertical and the direction orthogonal to

the mean surfacewind. This type of scanningprecludedan estimation of u_v _.

To accomplish the scanning described above an a'priori knowledge of the mean

surface wind need to be assumed and this can be obtained from a single Velocity

Azimuth Display (VAD) scanning (Kropfli, 1986).

The actual implementation of the scan (called also RHI for Range Height In-

dicator) consists of first positioning the Lidar (at zero elevation) in the direction

of the mean surface wind. Keeping the horizontal direction fixed, increments in

elevation @ are made until an elevation ®t is achieved. Both @1 and AID (the in-

crement) are controllable. In our case we have taken AID _ 1 ° and ID1 = 42 °.

From the position @1 one ca'_ move the Lidar as quickly as possible to a vertical

scanning, which is =t=2 ° away from the zenith .This is followed by a quick descent

to ID1 - From (_1 the Lidar moves down to zero elevation by decrements of AO.

This completes one RHI scan. Next, one points the Lidar in a direction orthogo-

nal to the first RHI plane and performs another RHI scan. At the rate of 20 Hz it
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is possibleto complete the abovedescribedtwo RHI's in _ 72 s. Whenever pos-

sible, such a scanning mode is performed uninterruptedly, for about an hour so

that, stable statistics may be obtained.

Figs. 1 and 2 are coloured graphical displays of the radial velocities during

one of our lZHI scannings. Red colours are Doppler velocities pointing away from

the Lidar (red shift) and blue colours are when the targets are moving toward

the Lidar. The full colour scale is indicated in the figures. Fig. 1 is for an RHI

plane with the x-axis pointing in the direction of the surface wind and Fig 2 is in

a plane normal to the first plane. In Fig. 1 the velocities are positive (red shift)

when the Lidar is 5 ° away from the north and are negative (blue shift) when the

shots are in the direction of 185 ° . This means that mean surface wind is essen-

tially from the south. A low level jet at an height approximately one kilometre

above the ground is also prominent. In Fig. 2 the eddy structure is apparent as

well as a tendency of the wind to become more westerly with height. This latter

property is revealed most prominently at the jet level where where red shifts are

apparent in the positive y axis (azimuth 95°); blue shifts are recognized in the

opposite direction.

4. Analysis Technique

a. Mean wind

Let a denote a radial velocity (positive if it moves away from the Lidar ) and

let u, v, w denote Cartesian velocities. Let x, y, z be Cartesian right handed coor-

dinates with the positive x being in the direction of the mean surface wind. Let 0

be an elevation angle. From geometry we find,



a = u cos ® + w sin ®; LIDAR pointing in the direction of the mean wind. (1)

a = -u cos @ + w sin @ ; LIDAR pointing opposite to the mean wind. (2)

a = v cos O + w sin ® ; LIDAR pointing 90 ° normal to the mean wind. (3)

a = - v cos O + w sin O ; LIDAR pointing 270 ° normal to the mean wind. (4)

Assuming momentarily that u, v and w are constants at fixed height and el-

evation angle, it is apparent that, u and w can be found in the x-z plane while,

v and w may be estimated in the y-z plane. In practice of course, u, v, and w

are not constants. In that case let i be an index for observations which are con-

strained to be sufficiently close (say ±50 m) to a certain height z0 (e.g., z0 =

500m or z0 = 600m etc. ). Let u, v, w be the ensemble average of the veloci-

ties in the above described "bin" . The average is both temporal and spatial. \Vc

may then rewrite (1), (2), (3), (4) as:

oq = ±_ cos ®i + t_ sin @i + fluctuations ; i = 1, 2, .... , Nx ; along the wind. (5)

ai = -t-Ocos@i + t_sin@i +fluctuations; i = 1,2, .... ,N_ ; across the wind. (6)
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Here N1 and N2 are the number of observations in the along and across the wind

"bins" respectively, corresponding to a certain height z0. The (+) comes when

the Lidar points in the positive x or positive y directions respectively. The nega-

tive sign is for negative directions.

Relations (5) define Nx equations with two unknown (_, t_) which can be

solved by conventional "least square" techniques. Because only the 1.h.s of (5)

is known the fluctuations are omitted. For horizontally homogeneous turbulence

and non-biased observations this approach may be formally justified i.e.,

Nx _ oc =_ (fi, u3) _ (ensemble average of u and w).

Likewise, under similar assumptions (_, t_) can be found in the y-z plane.

In practice the above least square method is slightly modified. The g prone

is estimated from data where most of the beams have a low elevation angle. De-

pending on the application two sets of t_ are generated, one solely from the ver-

tically pointing beams (4-2 ° away from the zenith) and, the other from inclined

beams with elevation angles in the interval 30 ° < ® < 42 °.

It should also be mentioned that, at low heights most of the observations cor-

respond to low elevation angles. In that case the estimate of t_ is not reliable.

With the closest range being 600 m we have found that t_ cannot be computed

reliably below 400 m. For such low heights a different method for estimating

the ensemble average vertical velocity has been devised. For low elevations (say

@ < 10 °) and assuming as a rule of thumb that, fi >> t_ and _ >> t_, we write for a

range R and an elevation @.

0_

o_i = +fi cos ®i + _'z R cos 2 ®/+fluctuations ; i = 1, 2, .... , Nx ; along wind. (7 - a)
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ai = _ cos @i + w- R cos 2 @i+fluctuations ; i = 1, 2, .... , Nx ; across wind. (7 - b)
uy

Relation (7) and (8) may be viewed as modifications of (5) and (6), where

the mean gradients are being represented explicitly rather than absorbed in the

fluctuations. The mean vertical velocity for low elevations is then obtained from

vertically integrating the Boussinesq's form of the mass continuity equation (e.g.,

Ogura and Phillips, 1962)

= - (o ,/ax + o /ou). (8)

Here _0 is the mean vertical velocity at the surface. In this study we assume

that, _0 = 0.

b. Second moments

To estimate the turbulence statistics we decompose the Cartesian velocities

in the usual way as,

u =_q- tt I " V t • _ " OJ, v=g+ , w=w+w r,a=5"+ .

We substitute the above in (1), (2), (3), (4) and, define the mean radial velocity

as_

-_ = -t-gcosOi + NsinOi along wind ;_ = :l:gcosOi + NsinOi ; across wind. (9)
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Using straight-forward algebraand the assumptionof horizontal homogeneity we

get for a bin corresponding to an height z0 that,

And,

Along the wind }

( a'_)i = q-u'w'sin20i + wl2sin20i + u'2cos20i ; i = 1, 2..., N1,

+ fluctuations.

(10)

Along the wind }

(a'=)i = -t-v'w'sin20i + w'2"---sin20i + yt2--'-cos20i ; i -- 1, 2..., N1,

+ fluctuations.

(11)

m

From the above it can be deduced that, the second moments u _2, v _, w 12, u_w _,

vlw _ can be obtained by techniques similar to the one deployed for the calcula-

tions of the mean wind i.e., a least square solution of N1 ( or N2 ) equations.

Similar to the mean wind estimations (considered in the previous section)

the reliability of the results depend on favourable geometries. Consequently, for

each moment calculations different data stratification are used. The variance of

the vertical velocity has l/sin2@ dependency. Therefore, at low heights (where

most of the data comes from too low elevation angles) the w '2 estimate is sus-

poet. Likewise, the horizontal momentum fluxes u_w ' and v_w _ have a 1�sin2@

dependency. Thus, the bulk of the observations used for estimating the momen-

tum fluxes must come from intermediate elevations say, 30 ° _< ® < 60 ° . The

horizontal velocities variances varies ,-, 1�cos20 and consequently most of the

data must be at low elevations. Taking into account the above constraints as well
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as the range limitations in the horizontal and vertical directions, we find that the

momentum fluxes cannot be estimated reliably at heights lower than 400 m. The

vertical velocity variance can be reliably estimated only from the beams which are

less than 2" away from the zenith (i.e., the analysis is limited to heights greater

than 600 m). The variance of the horizontal velocities on the other hand is esti-

mated from the ground up to an height close to 2 kin.

To get the vertical velocity variance at levels below 600 m one needs to inte-

grate the continuity equation from the bottom up, setting zero vertical velocities

as the lower boundary conditions. It is important to remember that only the ra-

dial winds are given. Thus, u and v are not measured at the same points. We

must therefore, consider the statistical form of the continuity equation. The de-

terministic equation for the fluctuations is given viz.,

_0 z
U2I(Z)

Therefore, the vertical velocity variance is,

w'2(-) = ax
0 0

&,,(z,,) av,(z,) ov,(z,,)
+

Ox Oy Oy au,(z,) av,(z,,) ]--+ 2T ay

Assuming the turbulence to be horizontally isotropic we obtain,

dz tdz tt .

0 0

f or,(..,) Or(z,,)w'_(z) = 2 Oy Oy
o o

dz'dz" ; along the mean wind. (12)

dz'dz" ; across the mean wind. (13)
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In practice, instead of calculating the double integrals in (12) and (13), a

computationally simpler approximate procedure is adopted. For low elevation an-

gles,

1 0 Ou

R OR RvR _- _x ; andv 0 ,2_ w.
(14)

Here v o is the meridional velocity (i.e., the tangential velocity in the cylindrical

coordinates R, O) and v R is the radial velocity. Define now ,5' and "_v o as the so-

lution (with mean quantities subtracted) of the 2-D continuity equation with zero

vertical velocity at the bottom namely,

1 0 nv,R + 1 0 ' = 0 (15)
R OR R O® v° "

Let (as before) i be an index for a "bin" i.e., all the observations with height

zi_ above the ground and satisfying the condition,

zi_ - Az <__zi _< zi_ + Az. (16)

From (12)-(16) we conclude that,

kVi

12 _ ~ 12w i = 2/,'V_ wi_.

i_=1

(17)

At present we are not yet able to obtain definitive vertical velocity variance

from the above vertical integration method. Therefore, they will not be presented

here.
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c. The vertical velocity balance and the surface heat flux.

The balance of vertical velocity fluctuations for horizontally homogeneous

turbulence may be shown to be (Wyngaard and Cot6, 1971) as,

O 17) = 1 w,ap' _ e 7( 2 7o( -ST" + (18)

Here p' is the pressure fluctuations, po is the air density at the surface,

e is the kinetic energy dissipation, g is the gravity acceleration, 8o is the

potential temperature at the surface and 0' is the potential temperature

perturbations. Other symbols have been defined elsewhere. Since w'#' is

the potential temperature - vertical velocity covariance it follows that, poCpW'8'

is the heat flux with Cp the heat capacity of air at constant pressure.

Wyngaard and Cot6 (ibid.) find that under unstable conditions (i.e., positive

heat flux) the pressure term at the surface layer (say the lowest 50 m of the PBL)

is small compared to the other three terms in (18). Therefore, at the surface layer

an estimation of the kinetic energy dissipation and the vertical gradient of the

third moment of the vertical velocity would enable the calculations of the surface

heat flux as a residual. It should be emphasized that the vertical velocity pressure

correlation is (according to Wyngaard and Cot6) an important term in the kinetic

energy balance. On the the other hand at the surface layer, the correlation be-

tween the vertical velocity and the vertical pressure gradient is small compared to

the other terms in (18).

Now, a traditional way to estimate the kinetic energy dissipation is by exam-

ining the line spectra of the longitudinal velocity correlation. In the inertial range

the expected relation is (Batchelor, 1956),
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f(_) = a_213_-513 " (19)

Where _ is the wave number, a a universal constant (- 0.5) and ](_) the

Fourier transform of the longitudinal velocity correlation (i.e., the transform of

u,(x)u,(x + _) or ,'(y)v'(y + _).

As has already been mentioned in the experimental design section, direct

measurements of vertical velocities (from a vertically pointing beam) are available

for heights greater than 600 m. This data is used to calculate the third moment

of the vertical velocity w '3 . For heights lower than 600 m one needs to integrate

the mass continuity equation in ways similar to what have been used in the esti-

mations of the second moments. The analogues of (12) and (13) turn out to be,

/][ ]Ou'(z') Ou'(z") Ou'(z"') dz'dz"dz"'"_(z) = 2 Ox Oz Oz ; along wind. (20)

0 0 0

jj[f av,(z,) av,(z,,) or,(:,,,).,'3(z) = 2 Oy Ou Oy
0 0 0

dz'dz"dz'" ; across wind. (21)

In practice, one does not need to evaluate explicitly the triple integrals in

(20) and (21). Instead, the two dimensional continuity equation (14) with the

provisions stipulated by (15) and (16) is vertically integrated. If the turbulence

is horizontally isotropic we obtain,

Ni

~13

w,_,= 2/x, _ _.
ik=l

(22)
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Definitive results from the above integration method are not yet available.

Consequently, in this paper we limit our discussions to third moments data at

heights greater than 600 m.

5. Error Analysis

a. General considerations

In the discussions below we confine ourselves to the effects observational er-

rors have on the estimates of the mean wind and its various moments. Other er-

ror sources include inter alia, insufficiently large number of independent obser-

vations (Wyngaard, 1983) and inappropriate modelling, e.g., the turbulence may

not be horizontally homogeneous. For an analysis of the vertically pointing beam

data there is an additional source of error namely, a Taylor-like hypothesis which

presumes that time-averaged statistics are the same as line-averaged statistics.

This latter assumption is clearly dependent on the scales of motion and the aver-

aging time; "large" eddies may move sufficiently slow and thus may not be ade-

quately sampled. Our sample size appears to be adequate. We find for instance

that, experimentations with subsets of the sample (e.g. omitting every other vol-

ume scan or every other range) have resulted in statistics which are quite close to

those obtained from the complete sample (+0.1 m2s -2 for the second moments ).

In discussing the sensitivity of the results to observational errors a distinc-

tion must be made between' biased and unbiased errors as well as correlated vs.

uncorrelated errors. Let 9i stands for some observation [e.g., square of the radial

velocity fluctuations in (10) and (11) or the radial velocities in (5) and (6)]. Let

¢_i be the observational error. Let ( } be a symbol for the expected value. The

errors are considered unbiased if,
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=o. (23)

The errors are uncorrelated (or white) if all the off-diagonal elements of the error

covariance matrix are zero i.e,

(24)

Where _ij is the Kronecker delta and cii are constants.

We shall also presume lack of correlation between the exact value fli and the error

g/3i i.e.,

(fli_i) -_- 0 (25)

Now, for unbiased white noise it is known that, as long as the overdeter-

mined systems of the type (5), (6), (10) or (11) are well conditioned ( i.e., small

changes in the r.h.s lead to small changes in the solution) the estimates become

more accurate as the number of independent observations increase. Furthermore,

the gcneral "rule of thumb" is that, if a(fli) is thestandard deviation of the er-

ror of an individual observation, the error estimate of the solution is proportional

to a(_i)/v/_ where N is the number of independent observations. By contrast,

when bias is present increasing the number of observations does not in general,

reduce the errors. The above remarks are intuitively obvious when the estimates

are of the form _--_ c_/3_ with _ cri = 1. However, their range of applicability is

much broader (Jazwinsky, 1970).

The analysis becomes more involved when the errors are correlated. In fact,

the simple least-square approach considered in this work is no longer optimal
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(Jazwinsky, 1970). In the simple approachone tries to minimize a functional J

defined as,

• i

With aij some matrix and xj the vector of the unknowns. In the more elaborate

approach one minimizes the functional J defined as

m i s t

Here Kim is the covariance matrix of the observational errors i.e.,

(27)

Ki,., = (SfliS_j). (28)

Of course, in the special case where Kim = cbim (i.e., non correlated uniform

observational errors) (27) is reduced to (26).

In what follows, we limit our analysis to non-correlated errors. As is shown

further below the computational procedures that we have developed reduce con-

siderably the error correlations.

While not entirely justified, we assume that, the "raw" radial velocity ob-

servations are not biased. An important source of bias for CO2 Doppler lidars

is a systematic deviations from the reference frequency. To partially overcome

this problem we have eliminated all observations where tile pulse monitor signal is

weak or displaying a tendency toward positive or negative bias. We have also in-

spected the data manually. After some experimentations we have decided (subjec-

tively) to, remove all data points where the absolute value of the radial velocity is
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larger than 25 ms -1. For each beam we have computed an average and then, re-

moved all data points whose deviations from the average exceed in absolute value

7ms -1. Virtually identical statistics are obtained if the cutoff value is 5ms -1.

Another source of bias is pointing accuracy. Eberhard et al. (1989) discuss the

(subjective) correction procedure for this type of errors.

b. Mean wind

According to Eberhard et al. (ibid.) the random error associated with an

individual radial velocity estimate (using 3 shots) is -t-0.7ms -1. Typically more

than 2000 observations are used to estimate _ and _. Therefore, the uncertainty

of the estimate of the mean horizontal wind due to uncorrelated non-biased obser-

vational error is quite small (-t-1.5 cm s -1).

Recall that in one method of computations the mean vertical velocity above

600 m is estimated from the vertically pointing beams. Also note (section 2) that

12 shots are fired in the vertical direction, thus the error of individual radial ve-

locity estimate is ±0.35 ms -1. The sample size in the vertical is is also quite

large. If, all beams which are less than 2 ° away from the zenith are included we

have N -'_ 1800. Therefore, the uncertainty of t_ due to non-correlated errors

is +1 eros -1. In another method of computations the tb is estimated from data

where the elevation angle is in the interval 30 _< ® _< 42. With a smaller sample

size (N=600) less favourable geometry (_ = 36) and an uncertainty of i:H;,'i,tual

measurements -t-0.7 ms -1, this latter method has -t-5 cm/s. On the other hand,

this latter estimate may be more representative than the former.

c. Momentum flux

Let's ®k_ be a single elevation which belongs to a "bin" (i.e., a vertical layer)
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' be the radial velocity devia-k. Let m be an index for a volume scan and let v,.

tions from the mean. We can rewrite (10) or (11) as,

(v_) ki m;1 = Ut-'TCOS2 Oki "_- w''-i'sin2 Ok, + u'w' sin 2®k,. ;for positive x. (29)

And,

12 m w

(vr) k, m;: = u'2 c°s2 Ok, + w '' sin: Ok, -- u'w' sin 2®k,. ; for negative x. (30)

Here (; 1) is an index for the forward beam and (; 2) an index for the backward

bealrl.

Subtraction of (30) from (29) yields,

u'w'k,m (individualmeasurement):[(v_2)k,m;1--(v:)k,m;21/(sin2_)k,). (31)

Summing over all volume scans and all elevations within a single "bin" k one ob-

tains,

1 12 iS

u'W'k(allmeasurements): _Z[( vr)k,m;1- (v_.)k,,n;:]/(sin2_k,). (32)
i m

12

An important point to emphasis is that, an individual v_ (or v_ _ ) may be

biased. However, due to subtraction and the homogeneity of the errors (there is
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only one instrument) the flux error 5u'w' is not. Furthermore, there is no rea-

son to believe that, the off-diagonal terms of the error covariance matrix are not

zero. In addition according to (25) little or no correlation is supposed to exist be-

tween a radial velocity error 5v,. and the "true" radial velocity v,.. Under these

conditions we can estimate the mean and standard deviation of 5u'w' using con-

ventional error analysis.

We start by noting that,

, ,5 v = 2VrSV r + (_v_r) 2 . (33)

From the error homogeneity for two different observations with indices k_rn; 1 and

k, m; 2 [see (32)] we can deduce (formally) that, an individual flux estimate is un-

biased because,

12

(t_(Yr )kith;1 -- ,2 -_6(,r ),,m;_} o. (34)

Utilizing (33), (34) and the various non-correlation properties discussed above we

obtain,

< ,2 ,2 > = 23/2_(Vlr)a(_V_r).{_('r )k,m;, --5(.. )_,m;_]_ 1/_ (35)

\Vhere the reader is reminded that a is the standard deviation.

From (32)-(35) and the various error properties it is not difficult to deduce

that.,

(Su'w') = O. (36)
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g(_u'w') = [2'/2N-1/21 sin(20)] g(v_)g(_v_). (37)

m

Here @ is some mean elevation angle for the "bin" k. Since the flux retrieval is

limited to elevation angles between 30 ° to 42 ° we take O = 36 °. We assume

(based on the horizontal homogeneity hypothesis) that,

(38)

We find _r(v_) _ +2ms-' and from Eberhard et al. (ibid.) a(_v_) = 4-0.7ms-'.

Typical values for N are __ 600. Over all then, a(,Su_w I) = 4- 0.1 m2s -2

d. Variance and third moments

As has already been indicated straight-forward squaring of the radial veloc-

ity induces bias and error correlation. Inspection of (10) and (11) reveals that

the variance calculations, u I2, v I_ and w 12 do not involve subtractions. To over-

come this problem we have avoided a direct squaring of the radial velocities. In-

t 2

stead, we have used various interpolation formulae of v r whose error is unbiased.

Specifically, let i be an index for either a range or an elevation let A be the reso-

lution and, let ai be some data We write,
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2 1 __2] + o(zxa),

1
_i _[O_i+1 -Jc O_i-1] -1- O(A2) ,

c_iai+l + O(A) ,

o_iai-i + O(A) ,

o_i+lai-1 + O(A 2) ,

if r.h.s >_ 0 ;

if r.h.s >_ 0 ;

ifr.h.s>_O;

if r.h.s > 0 ;

elsewhere

(39)

For convenience we define,

int

2 1 1
Cti+ q- -_O_i_ 1 -- gO, i+ 2 -- gOli_ 2 ,

O_i } [Oei+l -_- OG_l] ,

O_i+l ,

OLi--1

[O_i+lOG-1]/O_i ,

if (r.h.s).ai >_ 0 ; else

if (r.h.s)-ai k 0 ; else

if (r.h.s).ai _> 0 ; else

if (r.h.s)-ai > 0 ; else

if other tests are null

(40)

Therefore, (39) is rewritten as,

l" II

(o_i) 2 = oq ta i + O(,,_k'_), for n >_ 1. (41)

Recall now that, for the vertically pointing beam we have a spatially high

resolution data in elevation (+2 ° from zenith with 0.2 ° increment). Therefore, for

the vertical beam analysis the index i refers to elevation. For most parts the hori-

zontal variance analysis is confined to elevations smaller than 20 ° and the index i

('=) isfrom(41)then, refers to range. At any rate the error in estimating v r i
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) t int e t_int t int= [(vr), ] 5[(¢r),]+5 v_, 5[(_), ](o'_),+5[(¢),]tv_), +5 o(zx-). (42)

It is worth noting that,

t t int(5(v,.1,6(,,,.1_)= 0 but ;(5(v',.),5(v',.),)# o. (43)

It is apparent from (39)-(43) and the fact that the errors should not be corre-

lated with the "exact values" that, using the approximate form for the square of

the radial velocity would result in an unbiased errors i.e.,

( "}5(v r )i =O+O(An), forn>_ 1 (44)

The error covariance matrix of 5 |vL'} can also be calculated. While the flux
k-] i

errors covariance matrix is diagonal this latter quantity is not, because, the in-

terpolation induce correlations. However, the matrix is still quite sparse. Each

observational error is correlated only with its two immediate neighbours. Further

more, a straight forward calculation of the error correlation between two adjacent

neighbours, and utilizing the various remarks about correlation (or lack of it) be-

tween various quantities would reveal that these off-diagonal terms are smaller
z

1 ! t
than the diagonal one by a factor of -6cor[(v,.)i(v,.)i+l]. Where cor[] is the cor-

relation coefficient (_< 1) between two neighbouring observations. Therefore, we

proceed with error analysis ignoring the effects of the off-diagonal terms.

Regarding the standard deviations of 5 v,. we utilize (40) - (44) and the

supposed lack of correlation between errors and "exact" observations (25) to find

that for an individual measurements,
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(45)

And for N measurements,

(46)

We can apply (46) directly to find (for vertically pointing beams) the stan-

dard deviation of the error of the vertical velocity variancenamely,

a(6w '-'r) = (2/N'/2)a(v')o'(6v',.); for the vertical beam. (47)

u

We can take a2(v'_) = w '_ _ 1 m2s -2. As has already been indicated in the

experimental design section for the vertically pointing beam we have, a(6v') =

4-0.35 msl. For a single volume scan we have 40 observations which are only 4-2 °

away from the zenith; we have 45 volume scans so that N = 1800. Overall then

a(_Sw '_) = 4-0.016 m2s -2 ; a rather small number.

Similar considerations can be used to estimate the errors in the third mo-

ments of tile vertical velocity with the result that,

a(_7) = (31N1/:)u,'2a(,%'_). (48)

u

Substituting appropriate values we get o(6w '_) = 0.024 mas -a .

We can also apply (46) to estimate the error in the horizontal wind variance.

The following considerations are pertinent:

First for heights larger than 600 m one can append the 1.h.s of (10) and (11) by



27

the vertical velocity varianceobtained from the vertically pointing beam. Second,

for heights less than 600 m the horizontal varianceanalysiscan be constrained

so that observationswith an elevation anglegreater than 20° are excluded. For

a 600 m height this means that elevations in the interval 5.74 ° < ® _ 18 ° are

included. If we neglect the vertical velocity variance contributions in (10) or (11)

the bias will be in the order of w'2 sin2(1(18 + 5.74)). For vertical velocity vari-

ance in the order of 1 m2s -2 we get a small bias of the order of 4 cm/s. Third,

by adding (30) to (29) we can eliminate the momentum flux from the equations.

Taking the above into account we can follow steps similar to (31) - (37) and ob-

tain, that

Likewise,

= (49)

= (50)

Typical values for N in the horizontal variance analysis are in the order of

4000 for low heights to 2000 for z ,-- 1.5 km. We take O _ 10 , a(_v') = 0.7 ms -1

and a(v_) = 2 ms -_ and obtain that, o'(_(horizontal variance)) ,-- 0.05 m2s -2
\

To test the effect of the interpolation formula (39) we have conducted exper-

iments comparing the use of (39) vs. straight forward squaring. We find, that the

momentum flux estimates are not sensitive to such variations. This is in line with

the finding of the previous section where, we have shown that the flux estimate is

not biased. By contrast employing (39) have resulted in variance reduction of the

order of 1 - 2 m_s -2.
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a. Mean properties

Using our analysis technique we find that the mean surface wind is essen-

tially from the south (direction ,-_ 185°). We have chosen a right-handed Carte-

sian coordinate system such that, the positive x-axis is the direction of the mean

surface wind. We call the x-component of the wind u and the y-component v.

The dependence of fi in height for the two case studies is shown in Fig. 3. The

wind at the lowest 500 m appears to be well mixed; a southerly jet is prominent

at --_ 1 km. The dependence of _ in height is shown in Fig. 4. By construction

is zero at the surface. It is becoming more westerly with height up to an height

of ,.o 0.9 km for the earlier sounding and ,-_ 1.1 km for the later sounding, then

becoming more easterly (at 1.3 km and 1.5 km respectively) where it turns more

westerly again. All the above features are in good agreement with hourly releases

of rawinsonde (Brutsaert, FIFE Document, ABL-1). In Fig. 5 we present poten-

tial temperature soundings (Brutsaert, ibid.) starting at 15:45, 16:59 and 18:54

UTC respectively (i.e., before, during and after our Lidar measurements). The

growth of the mixed layer (i.e., the region where the lapse rate is close to adia-

batic) during the two hour period is apparent. An exact definition of the "top" of

the mixed layer is difficult. By one criteria we can place the "top" to be at 700 m

for the first two soundings and, at 1.3 km for the last one. By another criteria

one may place the top at 0.7 km, 1 km and 1.3 km respectively; more in line with

traditional mixed-layer models of the type discussed by Tennekes (1973).

The mean vertical wind is displayed in Fig. 6. One profile is derived using

only the vertically pointing beam data. The second profile is estimated from data

where the elevation angle is in the neighbourhood of 30 < O < 42. This latter pro-
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file is used to define the mean radial velocities (9) and the fluctuations needed for

the momentum flux calculations (32). While, the _ estimate from the vertically

pointing beams are less prone to observational errors, the statistics of the inclined

beam may be more representative. It is reassuring to find essentially zero vertical

velocities above the mixed layer. The unusually large mean vertical motion in the

mixed layer is perplexing. It could be due to deficiencies of the Taylor hypothesis.

Thus, long term sampling (1 hr) of the vertically pointing beam data may not ad-

equately represent the eddies that are either too slow or too large. We have also

attempted to obtain mean vertical motion by vertically integrating the continuity

equation from the bottom up [(7-a), (7-b), (8)]. While the integration reveals neg-

ative motions at the lowest 600 m there is still no satisfactory matching at 600 m

between the vertical integration result and the vertically pointing beam data.

b. Momentum fluxes

The vertical profiles of u'w' are shown in Fig. 7 and, those of v'w' are dis-

played in Fig 8. At the mixed layer the sign of the fluxes are in agreement with

the eddy viscosity concept, i.e.

u'w' = --I(lOqU/OZ ; and; v'w' = -KeO_,/Oz; with; (/(1, K2) > 0.

The above is true provided that, the shear is interpreted not locally but, as some

kind of vertical average from the surface layer to the top of the mixed layer. Tak-

ing local values of the shear may lead to unrealistically large values of/(1 and N.2

when the wind does not change with height (Figs. 3 and 4).

In the mixed layer the u'w' values are negative; near the surface this implies

retardation of the surface wind. The values of v'w' on the other hand are posi-
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tive; this implies retardation of the (negative) _ component (Fig. 4). For compar-

ison purposeswe also display in Fig. 7 the aircraft estimate of ulw ' at z = 50 m

(McPherson et al., FIFE document, ABL-6). The Lidar and aircraft values are

consistent even though the lowest level where Lidar derived fluxes are feasible is

450 m. It should also be mentioned that with the exception (noted further be-

low) the flux values are insensitive to the method by which @ is calculated. The

present results are obtained by using the @ estimated from the inclined beams

data (30 ° < @ < 42 °) data and then, subtracting it (and the mean horizon-

tal wind) from the radial velocities. But, similar results are obtained if t_ is esti-

mated from data where the beams are vertically pointing (+2°). The only excep-

tion is that, for the 16:11-17:11 UTC period a local minima (not shown here) is

indicated around z=800 m if @ is estimated from vertically pointing beam data

whereas, none seems to be apparent (Fig. 7) if the present @ is used.

The flux values of urw _ in the stable layer above the jet do not support the

eddy viscosity concept; it continues to be negative even though the wind above

the jet is decreasing with height. Furthermore, unusually large values are ob-

served for both case studies (e.g., ulw _ ,._ -2.5 m2s -_ at z _ -1.4 km for the

17:29-18:20 UTC case study). To get further insight on the nature of the per-

turbations we have examined time series of the vertically pointing beam data

at various observational levels (600 m _< z < 1950 m). The time resolution is

36 s. Fig. 9 displays the time series for the period 1T:29-18:20 UTC. Fig. 10 is

tile spectral analysis of Fig. 9. In the stable layer (say z _> 800 m) the spectra

has two distinct peaks; one with period T=54 min (the first Fourier mode) and

the other with period of 10.8 min (the fifth Fourier mode). The significance of

the first Fourier mode is not clear. According to standard time series analysis

(e.g., Jenkins and Watts, 1968) the spectral amplitude of the first Fourier mode
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may be influenced by artifacts such as the method of detrending, an inadequate

sampling, the assumption of periodicity, etc. The peak of the fifth Fourier mode

(10.8 mix) is deemed not to be susceptible to the above artifacts. It is interest-

ing that the 10.8 minutes period correspond to an angular frequency (w = 2_r/T)

of the order of 10 -2 s -1, not too far from the standard atmospheric value for the

Brunt V_iis/il£ frequency [(g/O)(OO/Oz)] 1/2. A spectral peak at the Brunt VKisii.lg,

frequency has also been reported in numerous other studies of vertical velocity

spectra of stable atmospheres (e.g., Ecklund et al., 1986; Gage, 1990 ). From the

wind and temperature sounding we have also estimated the Richardson number

Ri defined viz.,

= (g/O)(OO/Oz) (51)
(Ou/Oz)'

In the stable layer we have found that, the Richardson number is in the range

of 1-2; significantly above the critical Richardson number (=1/4) below which

turbulence is dominant. Furthermore, a Richardson number greater than unity is

a necessary condition for waves absorption at critical layers.

At present we interpret the large counter-gradient fluxes as a manifestation

of the interactions between the convection in the mixed layer and waves in the

stable layer. In particular_ for reasons discussed further below we believe that

the large fluxes are related _o tile existence of a so called "critical layer". Previ-

ous studies (Kuetner et al., 1987 and Clark et al., 1986) have already identified

the convection in the mixed layer as an important energy source for waves in the

troposphere. To further proceed, let us examine the equation that describes the

vertical structure of two dimensional linear gravity waves in a stable atmosphere

is (e.g., Gossard and Hooke, 1975 p. 456)
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N2 - ]
Uzz

W,_+ (c-fi)2 +(c_fi) k 2 W=0. (52)

Here c is the speed of the wave, W is the amplitude of the vertical wave velocity

and k is the angular wave number (c = w/k; with w the angular frequency). Dif-

ferentiation with respect to z is denoted by a subscript z and other symbols have

been defined above. If a situation occurs where, the mean wind (fi) at a layer of

height z is equal to to the speed of the wave then, that layer is termed "critical

layer". Mathematically the differential equation (52) becomes singular.

A detailed quantitative discussion of critical layers is beyond the scope of this

paper but few remarks are in order. When a wave reaches a critical layer and the

Richardson number is greater than 1, the wave energy is presumed to be com-

pletely absorbed. Even if (due to say non-linear effects) reflection does occur its

effect must be limited since, the wave can not significantly penetrate into the adi-

abatic layer below. Overall then, if the predictions of linear theory are qualita-

tively correct the presence of a critical layer should result in a build-up of wave

energy and momentum in that ]aver. Of course, once the wave amplitude grows

non-linear effects take place. As long as the flow can be characterised by a single

frequency (e.g. the Brunt VSis£1£ frequency) the effect of the non-linearity is to

steepen the wave front* and to diminish the gradients at the back. This should

enhance the "downward" transport at the front and diminish the "upward" trans-

port in the back so that on the average the "downward" transport is enhanced.

Another consequence of non-linearity is the breakdown of the so called Eliassen

and Palm flux theorem which states that for linear gravity waves O/Oz(u-;'-_w') = O.

* Here "front" and "back" are defined in a frame of reference moving with the

mean wind; the terms "upward" and "downward" are used in the context of a

right-handed coordinate system with the x-axis pointing in the direction of c - ft.
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Our data (Fig. 7) indicate large momentum flux divergence.

To precisely establish the existence (or lack of) a critical layer one needs to

independently measure the mean wind and the group velocity of the wave. This

latter measurements are not feasible with the present scanning. Therefore, the

above discussions must be regarded as speculative; however, if one accepts the

proposition that the energy source is the PBL convection and, the Brunt VKisKl"a

frequency is dominant, then it is possible to establish a bound for the phase ve-

locities and see whether they are in a range which can overlap with that of the

mean wind. From our spectra of the horizontal velocities (Figs 15 and 16) we

have inferred that, the horizontal scales of the energy containing eddies in the

PBL are in the range of at least 600 m - 6 kin. This should excite waves in the

stable layer with wave length A also in that range. Taking the Brunt V_iisK1K fre-

quency N to be -_ 10 -2 s -I we get (from c = w/k and k = 27r/A) that the phase

velocities are in the range of 1 ms -1 -10 ms -1. From Fig. 3 (the mean fi wind) we

establish that the velocities in the stable layer are in range of 8 ms -1 to 19 ms -1

with an indication of further decrease with height. Thus, an existence of a criti-

cal layer seems plausible. We suspect that such critical layers may be present in

other cases where, the Richardson number is above unity and, the energy con-

taining eddies in the mixed layer have lengths scales large enough, to excite waves

whose phase velocities are comparable to the mean wind aloft.

c. Variance

The vertical profile of the variance of w w '2 is shown in Fig. 11. We have

used the vertically pointing beam for these calculations. Only the 17:29 -

18:20 UTC is shown here because of some uncertainties in the pointing accu-

racy of the vertically pointing beam for the earlier time. The variance gener-
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ally decreases with height but a relative maxima near the critical layer is ob-

served. Because vertically pointing data is not available at heights less than

"-_ 0.5zi;(zi the height of the mixed layer), the well known maxima at ,-, (0.2zi -

0.4zi) is not detected.

The vertical profiles of the variance of u ( u '2 ) is shown in Fig. 12 and that

of of v '2 is displayed in Fig. 13. For most part the profiles are consistent with

the established conceptual picture of the PBL (e.g., Caughey, 1984). In the sur-

face layer the variance is decreasing with height; in the mixed layer the horizon-

tal variances seems to be well mixed as well. A notable departure from classi-

cal results is in the vicinity of presumed critical levels. The horizontal variances

seems to have local maximas when, local maximas of absolute values of momen-

turn fluxes are present. In the part of the stable layer above the critical layer, the

fluxes diminish with height in agreement with other observations of the stable

layer (e.g., Lenschow et al. 1989). The variance of u also diminishes with height

at the top of the domain, but the v variance does not. This latter phenomenon is

probably associated with the transient nature of the v wind in that region (Fig.

4). Later soundings (not shown here) has revealed that the v wind (approxi-

mately east-west in the present coordinates) to be consistently more westerly with

height.

d. The kinetic energy dissipation, and the surface heat flux.

Recall from the discussions in section (4. c) the balance equation for the ver-

tical velocity fluctuations in the form (18) rewritten here as (53) viz.,

0 1 -_) 1 Op' e g w'O'_ = --(w,-aTz) - +oz ( po -g2o (53)
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As has already been discussed the pressure term may be neglected near the

surface therefore, the heat flux may be calculated as a residual balance between

the the gradients of the third moments and the kinetic energy dissipation e. Re-

call also that, the kinetic energy dissipation can be estimated from the spectra

and (19) provided that an inertial _;-s/s law is established.

Fig. 14 is a profile of the third moments of the vertical velocity w '3. The

positive values at heights 600 m < z < 800m is encouraging. On the other hand

the negative values up to an height of 1200 m are perplexing. If it is real it could

be due to the steepening of the waves or the or skewed negative motions in the

entrainment zone. On the other hand it could be due to sampling; and the inade-

quacy of relating turbulence parameters to the statistics of time series in a single

spatial location.

Figs. 15 and 16 are the longitudinal spectra of the u and v velocity correla-

tion in the surface. All the beams in the lowest 100 m of the domain are included.

Each beam is spectrally analysed and than all the spectras in the entire time pe-

riod (17:29 - 18:20) are combined. Prior to evaluating the Fourier coefficients the

data is subjected to an high pass filter to remove wave length larger than 5.4 km.

To minimize aliasing a low pass filter with weights (1/4, 1/2, 1/4) is also applied.

This removes all wavelength shorter than 22, where & is the range resolution. In

both the u and v spectra an inertial -5/3 power law is clearly established. As the

wave lengths get shorter, some attenuation due to the application of the low pass

filter is apparent. The saturation at the high wave numbers is almost surely due

to noise.

From the amplitude of the power spectra at the inertial range we have es-

timated that e = 5.02 x 10-3m2s -a. By assuming that w'a(z = O) = 0

and, using the next two data points in Fig. 14 to fit a parabola we obtain
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1 a_,'3(z = 25m) = 1.43 x 10-3m2s -3 From this and using P0 = 1.275kgm -3
2 Oz

, Cp = 1004Jdeg-'kg -1 and 00/9 = 30degs2m -1 we get a surface heat flux

value ,_ 100 Wm -2. This is in apparent agreement with the average estimate of

the surface stations. Nevertheless (as discussed above) the contribution from the

gradient of the third moments is uncertain.

6. Conclusions

1. With respect to the analysis technique we have shown that for an horizon-

tally homogeneous turbulence the mean wind, its variance and the vertical

momentum fluxes can be deduced from a single Doppler Lidar data. While

the accuracy of individual radial velocity is only -t-0.7 ms -1 we have ex-

ploited the large sample size to reduce the errors considerably. For the pur-

pose of estimating the first moments the error reduction is in essence a sim-

ple averaging procedure. In calculating higher moments non-finear effects

usually modify the error field so that it becomes biased and correlated. Un-

der these circumstances simple averaging does not reduce the error's vari-

ance. We have developed effective procedures to remove bias and reduce

error correlation. Taking into account the large sample size we have shown

that if the above mentioned procedures are utilized, we can obtain estimates

of the variance and momentum fluxes with sensitivity to observational error

which is at most -t-0.10 m2s -2. Regarding hardware improvements, the most

serious problem is the stability of the reference frequency. Another serious

limitation is the range resolution (=150 m). For PBL studies a more desir-

able resolution is 25 m. New solid state Doppler Lidars could address both

issues and are currently under developments iu WPL and elsewhere.

2. Spectral analysis of the horizontal velocities has in a natural way produced a
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_-s/a power law at the inertial range. We view this as another indication of

the viability of our analysis technique. From the power spectrum we have de-

duced the kinetic energy dissipation. Using the statistical form of the Navier-

Stokes equation the surface heat flux has been derived as a residual balance

between the kinetic energy equation and the vertical gradient of the third

moment of the vertical velocity. Our estimate of the surface heat flux is con-

sistent with the average estimate of the surface stations. This latter result

must be considered preliminary, because at present, the third moment of the

vertical velocity cannot yet be reliably estimated at heights which are below

600 m.

The momentum fluxes in the mixed layer are in qualitative agreement with

the eddy viscosity concept. However, in the stable layer the fluxes are

counter-gradient. The Brunt V£isiil£ frequency is the dominant one in the

stable layer and the Richardson number is greater than one. We view this

as an indication that the transport is accomplished by gravity waves. In the

stable layer negatively large flux values _ -1.5 m2s -2 are concentrated in

thin layers where also, the flux divergence is large; in contradiction to the

Eliassen-Palm flux theorem which, predicts (in the linear case and in the ab-

sence of sources or sinks) that the flux divergence is null. Our interpreta-

tion of the large flux values is that theyare due to an absorption by a critical

layer and the non-linear effect of steepening of gravity waves.
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FIGURECAPTIONS

Fig. 1 RHI display in thedirectionof the meansurfacewind. Note the southerlyjet at 1kin.

Referto text for furtherexplanations. -

Fig. 2 RHI displayin the direction normal to the mean surface wind. Note the eddy structure in

the mixed layer. Also, the wind becomes more westerly with height.

Fig. 3

Fig. 4

Prof'tles of ff with height for the two case studies. A right handed coordinate system is

used such that the positive x-axis is the direction of the surface wind. The surface wind

direction at 17:29-18:20 UTC period is -185 ° while the direction at the other period is

-189 ° .

t

Profffles'bf q with height for the two case studies. Note by construction _7 =0 at the

surface. Refer to Fig. 3 and the text for further explanations.

Fig. 5 Vertical pmFales of 0 (the lX)tential temperature) from nearby balloon measurements at

15:45, 16:59 and 18:54 UTC, before, during and after our measurements period.

Cotmgsy of W. Bmtseaxt. _ .

Fig. 6 Vertical profiles of _' with height for the period 17:29-18:20 UTC. One profile is

obtained using the vertically pointing beams and the other from inclined beams.

Fig. 7

Fig. 8

u'w''''_ profiles for the two case studies. Refer to Figs.3, 4 and the text for explanations of

the coordinate system. The aircraft data is for 17:29-18:20 UTC (Courtesy of R.

Desjardins and I. MacPherson).

v 'w' profiles for the two case studies. Refer to Fig. 3 and the text for explanations of the

coordinate system.

Fig. 9 Time series of the vertically pointing beam Doppler velocities for various heights and for

the period 17:29-18:20 UTC. TJae horizontal axis is time in hour. The time resolution is.

36 s. The amplitude in ms "1 is indicated on the vertical axis, while height is indicated by a

series of horizontal lines.



Fig. 10 Spectral analysis of Fig. 9. The periods T n (in minutes) are indicated in the horizontal

axis. Also indicated is the Fourier mode n=T/T n with T the longest resolvable period

(=54 rain).

Fig. 11 Vertical profile of the variance ofw ( w '2 ) with height for the period 17:29-18:20 UTC.

Fig. 12
m

Vertical profile of the variance ofu ( u '2 ) with height for the periods 16:11-17:10 UTC

and 17:29-18:20 UTC. Refer to Fig.3 and the text for explanations of the coordinate

system.

Fig. 13

Fig. 14

Vertical profile of thc variance ofv ( v '2 ) with height for thc periods 16:11-17:10 UTC

and 17:29-18:20 UTC. Refer to Figs.3, 4 and thc text for explanations of the coordinate

system.
o. _.

Profile o 4 the third moment of the vertical velocity w '3 derived from the vertically

pointing beams. The observation period is 17:29-18".2.0 UTC.

Fig. 15 Longitudinal spectra of the u velocity correlation at the surface. _:=n2_r/'Lmix;

n=l,2 ..... N. 7Lmax is the longest resolvable Wavelength (--5.4 lma) N=_ax/A with

A= 150m, A is the spatial resolution. The -5/3 fit is also indicated.

Fig. 16 Longitudinal spectra of the v velocity correlation at the surface. Refer to Fig. 15 for

explanations. The -5/3 fit is also indicated.
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